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Nonlinear propagation of electromagnetic pulses in 
two-level media under strong coupling 

F Ginovart and J Leon 
Physique Mathematique et Theorique, Universite Montpellier 11. 34095 Montpellier cedex 05, 
France 

Received 18 December 1992. in final form 30 September 1993 

Abstract. We consider the problem of the propagation of shortduration light pulses in a two- 
level medium in the regime of strong intendon, near the resonance. with no restriction on 
the strength of the coupling between field and medium. We prove that the lo& variations 
of the population difference created by the electric field actually induce P nonlinear effect by 
coupling the fundamental of the field Fourier component to its harmonics. As a result, the 
multiscale avmging limit of the Maxwell-Bloch system is a new system of coupled nonlinear 
S c W i n g e r  equations for the slowly varying envelope of the electric field. This system has 
one integrable limit when the electric field is eireuIarly polarized: it is the scalar nonlinear 
S c M i n g e r  equation. Moreover, it possesses three consmu of the motion and a Hamiltonian 
formulation. Then we prove that our system is non-integnble as it does not pass the Painlev6 
test. Finally, a stability analysis shows that it is modularionally unstable and thus it propagates 
steady pulses of coherent light. 

1. Introduction 

We report here results of a theoretical study of the nonlinear propagation of an 
electromagnetic field in a dielectricmaterial medium. This is an old and wide-ranging 
problem [l] which we restrict to the case of the interaction between classical radiation 
and a two-level quantized medium. The basic model equations are the Maxwell equation 
for the electromagnetic field and the Schrodinger (or Bloch) equation for the dipole 
moment operator. This semi-classical approach is known to be quite effective in the 
absence of spontaneous emission processes. For the general problem of the interaction 
of electromagnetic radiation with a molecular fluid, we refer to [2] (and the references 
quoted therein) where a complete treatment of the linear problem is given. 

The problem which we are interested in is that of the modulation of the electric-field 
envelope resulting from the transient response of the medium in the regime of strong 
interaction. Here, strong interaction means that the nonlinear coupling between field and 
medium is a dominating process. This can be achieved in two ways: either by launching 
large-amplitude laser pulses or by considering a medium with a strong coupling. The first 
situation is described in the work of McCaU and Hahn [3] where the coupling is weak with 
respect to the field intensity. We consider here the second case when the magnitude of the 
coupling is not a small parameter of the model. 

Next the exciting pulse is considered to be of short duration compared with the relaxation 
times of the medium and hence we neglect the relaxation effects. This has proved to be a 
relevant approximation for laser pulses of duration of order 10 to 100 times the relaxation 
time T2, as the experiments do confirm the lossless pulse Propagation [4]. 

0305-4470/94/113955+16$1950 Q 1994 IOP Publishing Ltd 3955 
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Since the works of McCall and Hahn [3]. we know that a short-duration strong laser 
pulse launched in ‘a low-density (< 10” partcm3) dielectric medium at a frequency close to 
the resonant frequency propagates with wave number k = oc (c is the light velocity in the 
medium), after having experienced an envelope reshaping to a soliton form. Many efforts 
have been made since then to extend and improve the theoretical model for self-induced 
transparency (SIT). 

A first instance of a more accurate description of the model has been proposed in [6] 
where the only approximation made on the general equation is that the interaction process 
does not produce backscattering of electromagnetic waves. The resulting model equation, 
called the reduced Maxwell-Bloch system, has then been proved to be integrable in [7] 
and hence to support a an N-soliton solution (see also [SI). It is worth remarking that 
the reduced Maxwell-Bloch system reduces to the SIT equations through a slowly varying 
envelope approximation (SVEA) limiting procedure, and hence that the integrability of the 
SIT system has actually been proved almost simultaneously in [7] and [9]. 

A different approximation method has been used in [lo] to include the effects of 
the second-order derivatives and to take into account the relative dimension of the Rabi 
frequency of the pulse versus the atomic transition frequency. This approach has allowed for 
treating much shorter pulses than the McCall and Hahn approach. Another example is found 
in [ 111 where the preceding approach relaxing the SVEA is extended in a systematic way by 
means of asymptotics beyond all orders. As a result, it is shown that the pulse velocities 
can only take discrete values, contrary to what is expected from a soliton which propagates 
at arbitrary velocities. Last we mention the work [I21 where the intrinsic nonlinearity of the 
polarization (nonlinear refractive index) and the group-velocity dipersion have been added 
to the coupling nonlinearity. The resulting system is still integrable [13]. 

In all the studies based upon SVEA, the magnitude of the coupling between fields and 
dipole population is the basic small parameter used for the multiscale expansion on the 
Maxwell-Bloch system. We want to consider here the general case when no particular 
restrictions are imposed on the intensity of the coupling. To make this study, we propose a 
rigorous asymptotic analysis of the basic system and consider, in particular, all the harmonic 
Fourier components of the fields (infinite series expansion) and assume that the envelopes 
vary slowly in space and time with respect to the phases. 

The resulting model equation is a system of coupled nonlinear Schrodinger equations, 
the coupling occurring between the two transverse components of the electromagnetic field. 
In this system the magnitude of the nonlinearity equals the value of the coupling parameter 
of the original starting Maxwell-Bloch system. 

To our knowledge this system is new and we prove that it is a Hamiltonian system 
which possesses three constants of motion. By means of a Painlev6 analysis we prove that 
the system is in general non-integrable, except in the case of circularly polarized waves, 
when it reduces to the scalar nonlinear Schrodinger equation. Our model is then shown 
to be modulationally unstable menjamin-Feir instability), and hence the nonlinearity is a 
natural source for solitary wave generation. The one-soliton solution is a two-parameter 
family of localized envelope solutions which corresponds to a circularly polarized electric 
field. 

2. Basic equation and dispersion relation 

Applying the usual procedure of molecular averaging over the dipoles, the material medium 
is completely described by the polarization vector P and the population difference N, see 
e.g. [14]. As a result the basic equations of our study are in the isotropic case (dilute gas 
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or when the fields are polarized along principal axes of a crystal [14, 151) 
a z ~  
a t2  
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ictive index 

(2.2) 

is a constant characterizing the dielectric medium (p12 is the electric dipole moment and 
the average is taken over the orientations). The polarization P is actually the source term 
and E the macroscopic field, which explains the presence in (2.1) of the Lorentz local-field 
correction factor (q2 + 2)/3. 

First of all we reduce the system (2.1) by considering the propagation in only one 
direction, say z.  Then it is quite useful to rescale the variables and normalize the fields by 
defining 

(2.3) 
9 T = Q t  Z=-QZ 
C 

N(Z, T )  = N ( z ,  t )Nr '  (2.4) 

(2.5) 
C 

P ( Z ,  T )  = LLo-P(z, t )  
9 

9 E ( Z ,  T )  = -E(z ,  t )  - 
C I/No:a~o 

where NO is the number of active dipoles per unit volume. The sytem (2.1) becomes the 
following dimensionless system: 

a;? + P = -(uNE~ (2.7) a d  = E .  aTp (a; - &a;) E = -a;? 
where we have defined 

J z = ( B  i) 
Note that the above structure follows from the starting equation (2.1) when E is assumed 
to depend on the variable Z only, which correspond to neglecting transverse modulational 
effects. 

The equation (2.7) is our basic model and it is characterized by one coupling constant 

and by the normalization of the population inversion density 

N ( z ,  T )  E [-I, 11 (2.10) 

(N = -1 corresponds to all atoms in the fundamental). Note that the constant (UNO, where 
No is the initial normalized population-density difference, is dimensionless and irreducible 
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(it cannot be scaled off), and hence it is characteristic of the strengh of the interaction 
between field and. medium. In this work we shall consider only the case of an attenuator, 
that is NO < 0. 

At this point it is worth remarking that the magnitude of the coupling constant 01 will 
have to be carefully considered with respect to the intensity of the electric field. Indeed, 
as we will make an asymptotic expansion in powers of a smalI parameter, we will need to 
compare this parameter on the one hand with the basic dimensional constant of our system, 
on the other hand with the magnitude of the applied electromagnetic field. In particular, for 
a dilute gas a is of order lo-’ while for a crystal its order is lo-’. 

We will make use in the following of the dispersion relation of the coupled system of 
partial differential equations (2.7) which is obtained by looking at the linear limit: 

F Ginovart and J Leon 

’P(Z, T )  = ‘Po exp[i(wT - kZ)] + CC (2.11) 

E ( Z , T ) = € o e x p [ i ( o T - k Z ) ] + ~ c  (2.12) 

N ( Z ,  T) =No. (2.13) 

The non-vanishing solution of (2.7) holds for 

( 0 2  - l)(w2 - k2) + O1NowZ = 0. (2.14) 

The above equation furnishes the linear dispersion relation of the system (2.7). 

3. Self-induced transparency in low-density media 

In their original derivation [3], McCall and Hahn have started the slowly varying envelope 
approximation (SVEA) with a number of a priori assumptions. These asumptions will be 
derived here by seeking a solution of (2.7) under the most general following form: 

m +m 

E(Z, T )  = ~j E,?((, 2) exp[i(wT - kZ)] 
j=o n=-m 

The basic hypotheses here are 

L Y = E  8 1 - w2 = U(& 0 = k + U(€’). (3.2) 
Hence the small parameter E measures the intensity of the coupling through the definition 
of (Y hereabove: the present case corresponds for instance to a medium of low densi& 
Then the other definitions in (3.2) have the following meaning: (i) the firing light pulse 
has a frequency equal (or very close to) the resonant frequency, and we shall be talking of 
resonant pulse propagation, (ii) the field propagates in the medium as in vacuum (w Y k). 
Moreover, the field is also supposed to be transverse inside the medium that is 

2 

Ejn(c, r)L = q ( c ,  r)z = 0. (3.3) 
These hypotheses completely determine the resulting limit equations: under the SVEA 

scaling 

az = Ea, aT = sa, (3.4) 
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only non-trivial solutions will be obtained for a series of constraints on the different Fourier 
components in (3..1). which can bcsummarized by rewriting (3.1) as follows: 

(3.5) 

The above expressions actually constitute the starting assumptions in [3]. We do not rederive 
here the results but the interested reader will find the essence of the method in the next 
section for the derivation of our equation (details in the appendix), and this method works 
exactly in the same way for both cases. 

Finally the system (2.7) becomes at first order in E the sharp-line limit (no 
inhomogeneous broadening) of the SIT equations of McCall and Hahn [3] 

I 
(a, - at).?$ = -UP,' . 

2 
This system has been shown to be integrable by Lamb [9] and later in [16] to have the 

mathematical property of transparency: the continuous spectrum (or background radiation) 
is exponentially vanishing as the pulse propagates in the medium. Hence, any firing pulse 
is reshaped to a pure soliton structure which then propagates freely as it would do in a 
transparent medium. 

4. Pulse propagation under strong coupling 

Now no constraint is assumed on the size of the parameter 01 or on the relative values of w 
and k. The same infinite series expansion as (3.1) is used, namely 

(4.1) 

w +m 
N(Z,  T) = Ed E NJ(e, r )  exp[i(wT - kZ)] 

j=o n=-m 

(for notational convenience, we forget from now on the bold face characters indicating that 
E and P are vectors of Et3). The reality of the fields imposes, of course, that 

E? J = EJ P?' J = I N? I = N,? . (4.2) 

E!=PP=O 1 1  j = O , l ,  ... ( 03. (4.3) 

There is finally the natural condition that the fields E and 7J (but not N )  have no zero 
frequency mode: 

The amplitude components in (4.1) depend on the two siow variables .$ and r. Looking 
for a travelling-wave solution, we set 

= E(Z - V T )  (4.4) 
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where V will be determined from the lowest orders in (2.7) and will have to be the group 
velocity of the wave (we will have to check that V = do/dk). For the slow time r, since 
the propagation at the group velocity is already included in (4.4). only small deviations at 
the next order are allowed, namely 

F Ginovurt und J Leon 

(4.5) 2 T = E  T. 
The technique then is only algebraic: it consists in examining the system (2.7) in which 

(4.1) is inserted at each successive order in 6 up to extracting a closed evolution equation 
at the lowest non-trivial order. The reader will find the basic principles of this method of 
multiscale expansion in [ 171 and fundamental considerations about validity, consistency and 
universality in [18]. 

A first simple consequence of this approach is that we demonstrate that the first-order 
variations of the electric and polarization fields are circularly polarized, namely 

E" I; - - P;, = O .  (4.6) 
Then the system (2.7) leads to a closed system of evolution equations for the first-order 
two-component field Ei(E, r ) .  The derivation of this system is reported in the appendix; 
we only want to point out here the following essential features of this derivation. 

(i) When no ordering of the constant CY is required, the order n = 0 forms a closed 
system if all its harmonics vanish, that is to say 

Po" = E{ = O  n = 1,2, ...,CO (4.7) 

N : ~ N ~ .  (4.8) 

E;, = P;, = E& = P;, = 0 

and, as a consequence, NO" = 0. Hence the only non-vanishing quantity at order zero in E 
is N:, the initial normalized pupulation difference 

(ii) The order n = 1 furnishes on the one hand the dispersion relation (2.14), and on 

(4.9) 

the other hand the result 

n > 1 

and 

N ; = O  n > O .  (4.10) 

(iii) The order n = 2 furnishes on the one hand the velocity 

(4.11) 

which is indeed the group velocity, on the other hand a system of coupled differential 
equations for the fields E?, Pj" and Nj" for j = 1,2  and n = 1.2, and 

NP=O. (4.12) 

(iv) To close the system obtained above, it is necessary to eliminate the second-order 

The final result is the following new system of coupled nonlinear Schrirdinger equations 
terms, which is done by looking at the expansion up to the third order in E .  

for the vector field 

(4.13) 
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Hereabove the characteristic constants A, j~ and a can be written by help of (2.14) as 
functions of only o and k:  

A =  j L = w  a =  (4.15) 

Note that A can be scaled off in r ,  p in 5 and U in the amplitude of @ and 4. Then Q 

is the characteristic dimensionless constant of this system and it depends only on the input 
frequency o. 

The above system now serves as the basic tool to study the propagation of a pulse 
of transverse electromagnetic field in a two-level sytem. First of all, it is useful for the 
discussion to report hereafter a summary of the different relationships between the fields 
that are demonstated in the appendix. Inserting in (4.1) all the restrictions on the Fourier 
components listed above together with those derived in the appendix, we have, in short, the 
expansion 

2 1 - w 2 k 2 - 0 4  (1 - w2)’ 3k2 + w4 3 + 0 2  
OJ 1 + o2 m2 - k2 1 + w2 (w4 - k2)2 2(1 + 0 2 )  ’ 

&(Z,  T )  = ~ E i ( p ,  5 )  exp[i(wT - k Z ) ]  +U(& + cc 
P ( Z ,  T )  = ~ P : ( p , 5 ) e x p [ i ( w T - k Z ) ] + O ( c ~ ) + c c  (4.16) 

with the relations 

(4.17) 

N i = O  N 2 - 5  2 - LcIp1 I I (4.18) 

and the nonlinear equation (4.14) for the field E:. 

Comments. 
(i) The coupling constant U, introduced in (2.7). is indeed fundamental as it measures 
now the strength of the nonlinearity. This nonlinearity is then a direct consequence of 
the coupling of the electric field E with the polarization field P through the population 
inversion N. 

(ii) Considering (4.16). the variation of the population-density difference induced by the 
modulation of the electric field is of order c2 while the amplitude of the electric field is of 
order E .  This fact is simply interpreted as follows: for an electric field of intensity weak 
compared with the size of the coupling constant, only a small proportion of the atoms are 
moved to the upper level (or excited) by the eleciiic field. It is worth comparing this result 
with the low density case (3.5) where the variations of E and N are of same order, i.e. all 
the atoms are excited by the electric field. However, though being of order cZ3 the variation 
of N cannot be ignored as it is actually the very source of the nonlinearity, see (4.18). 

5. Integrable limits 

The system (4.14) has a simple integrable limit in the case of circularpolarization, that is 
when 

4 = =ki@ (5.1) 

for which it reduces to the scalar NLS equation 

iAa,@ -pa:@ - Z U I @ I ~ ~  = o (5.2) 
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It is the so-called focusing nonlinear Schrodinger equation, possessing localized soliton 
solutions (see section 7). If the hypothesis (5.1) had been adopted right at the beginning of 
the study, one would have derived directly the NLS equation as the model for the interaction 
of a polarized electromagnetic field with a dense two-level medium. 

Another integrable limit of our system would be obtained for a = 1 for which, at first 
sight, the system (4.14) reduces to the Manakov system [19]. However, setting a = I in 
(4.15) gives o = 1 and consequently h = p = 0. Hence this value for a is forbidden in our 
model and the question arises as to whether or not the system has another integrable limit. 

F Ginovart and J Leon 

We consider the random phase averaging limit, obtained by setting 

@ = eieI @ =@’e’& (5.3) 
where 6’1 and 02 depend on some external parameter, and by averaging (4.14) over the phase 
O1 - 6’2. In this case, the RHS of (4.14) vanishes and the equation becomes the Manakov 
system [191 

iia&’) -@(@‘) -~(~I(@’)I’+I(@’)I’) w’) = O  
iia,(@’) -pa;(#‘) -a (al(@’)i2 + w’)1’) (4’) = 0. 

(5.4) 

This is actually a non-integrable system (except again for a = 1) [20]. 
Our system then appears to be more general than the Manakov equation and the question 

of its integrability will be considered through Painlevd analysis in section 7 .  We will discuss 
in the following section some essential differences between the two models, based on the 
related respective conservation laws. 

6. Conservation laws, Hamiltonian 

It is possible to prove by direct calculations that the evolution (4.14) possesses three 
conserved flows, namely, 

ar(i@i’+i@i2) = - i p a ~ ( ~ ~ @ - $ @ t + ~ @ - ~ @ ~ )  (6.1) 

a&@ - $et + &@ - 449 = -iiW&@ - $@tt +@it@ - &td (6.2) 
azx + a g  = 0. (6.3) 
In the last equation hereabove, the current 3 is given by 

3 = zE;[ - P(P&@~ - iw +&E@; -&@E) + k ( a W  + I@?) 
x ( & q  - &h +&e@’- &e) - 2a(a - 1)(@&’ - &ih’)] (6.4) 

and the Hamiltonian density 71 by 

E = 2j;2p(I@e1~ + I@& -z(uI@121@iz - aa(lq14 + 141~) - a(a - I)($%’ + P ~ L ~ ) .  

Our system (4.14) is Hamiltonian with respect to the following Poisson bracket: 

1 

(6.5) 

where 

j = 1  *I = Ilr 
j = 2  + 2 = @ .  
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Indeed Hamilton’s equations of motion are then precisely (4.14), that is 

@ r ’ =  {+>NI (6.9) 
-1 

= -[-h(a1@12 + MI% - 2a(a - ~ ’ r 7 r  - 2~@6:1 (6.10) 

4 r  = (4, XI (6.11) 

= -~-2a(aI4l2 + I@lZ)4 - 2 4 2  - 1)@21- 2P4HI. (6.12) 

There is an important properly which creates the difference between our system and the 
Manakov equation (5.4): in our case, only the sum 1 I@[’+ 161’ is a conserved quantity (by 
integration of (6.1)), while both terms are independently conserved in the Manakov case 
(5.4). Here we have indeed 

21  

-1 

21 

a, / 1 $ l 2  d$ = -a, lglz d$ = ia(a - 1) (62+2 - 4z+z) d$ ~ (6.13) 

and consequently there is an effective coupling between the two directions of polarization 
of the electric field. However, the system being not integrable, we can think of studying this 
coupling only in numerical experiments, which again will be the subject of further studies. 

s s 
7. Painlev6 analysis of the system 

The purpose of the generalized Painlev6 test on non-integrability is to determine whether the 
general solution of a partial differential equation (PDE) has critical points (e.g. singularities 
which are not poles) [24-27]. In such a case, the PDE does not pass the Painlev6 test and 
is conjectured to be non-integrable. 

A differential equation has the Painlev6 property if its general solution U can be expanded 
locally in a Laurent-like series 

where uo # 0, ‘p = p(t, r) ,  uj = uj($,r)  are analytic functions of (4, r )  in the 
neighbourhood of the singularity manifold 

M = ( ( 5 , r )  : P($, r )  = Q1 (7.2) 
and where 01 is a negative integer. 

(i) Determination of the leading-order behaviour a. 
(ii) Search of the resonances which are the values of j ,  in the expansion (7.1). at which the 

corresponding uj is an arbitrary function. Indeed, when it fails to be arbitrary, terms 
of the form pj In ‘p must be included in the expansion, and this makes the solution 
multi-valued about the singularity manifold. 

Here we shall obtain the result that the only case in which the system (4.14): 

The test consists of three steps: 

(iii) Verification that there exists a sufficient number of arbitrary functions. 

iaT@ - - @I@? + I+Iz) + = (a - 1)@’r7r 

iar@ - a@ - (ai+lZ + I+l’)$ = (a - 1 ) + ~ 4 .  
(p/a has been scaled off into $ and )./a into r )  passes the test corresponds to the value 
a = 1. However, as discussed in section 5, this case is forbidden and hence the system 
(4.14) is not integrable. 

(7.3) 
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IC is convenient first to take the complex conjugate of (4.14) and to consider the system 
of four coupled equations (where e, $, 6 and 6 are the independant variables). In order 
to find the leading order, let us set 

* = x ( p "  4 =y(pa= $ = z@73 4 = wrpu'. (7.4) 

Then, equating the dominanting terms, we obtain on the one hand 

rYl = a2 = 013 =a4 = -1 

(yz)2 - (XW)Z = 0 
(2 + Z2)[2rp; + uxz + ywl + (U - l)xz(yZ + WZ) = 0 
( y z  + w2)[2(p$ + ayw + XZI + (U - ~)yw(x' + z') = 0. 

(7.5) 

and on the other hand the relations 

(7.6) 

The solutions of (7.6) are 

x = o  
x = o  

x = i w  
x = f w  
x = f w  
x = i w  
x = f i z  
x = f i z  

x = iip$/w 

y = -z(p;/caw, z = 0 
y = fiw z = o  
Y = -$/U z = f i w  
y = f i w  z = i i w  
y = f i w  z = T l W  

y = Fiw z = f i w  
y = Fiw z = T l W  

y = f i w  
y = ~ i w .  

(7.7) 

Note: the signs above are in one-to-one correspondance. 
One always occurs at j=1 and 

corresponds to the arbitrariness of (p itself. The technique now consists in inserting the 
ansatz 

The next step consists in finding the resonances. 

@ = x/(p + u , p  6 = YIP + b.rp"-' 
(7.8) 

$5 = z/(o + c,(p"-' 4 = w/p + d.(p"-' 

in the system (7.3). By comparison of the lowest-order terms we obtain the linear system 

A.X, = 0 (7.9) 
where 

N + 2axz + yw ax2 + (U - 1)y' XW + (a - 1)Zyz 
az2 + (a - 1)w2 N + 2axz + Y W  wz 

A = (  yz + (a - 1)ZXW XY N + ~ U Y W  + xz 
xw + (a - 1)Zyz uwz + (U - 1)z2 

XY 
YZ + (a - 1)2wx 
ay2 + (U - 1 ) ~ '  
N + 2uyw + xz z w  

with N = (n - l)(n - 2)4$ and .+). 
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A non-trivial solution X. requires det{A} = 0. Among each of the14 different solutions 
( x .  y ,  z or w cannot be taken as zero) of (7.7) we select those for which the resonances, 
e.g. the eight values of n,  can just be integers. We find three of such solutions, namely 

x = -iqi/w y = -+$/w z = -iw 

x = i q / w  
x = -$/w y = - 4 / w  z = -iw 

n = -1,O, 3,4, (3 f (-7 + 16u)'/2)/2, (3 f (-7 + 1 6 ~ ) ' ~ ~ ) / 2 .  

y = -p:/w z = iw (7.11) 2 

possessing the following resonances: 

(7.12) 

As n has to be an integer, the quantity (-7+ 16a)'/2 must be odd. Let consider the different 
cases. In the first one (-7+ 16a = I), the value of a would imply 3 +02 = 1 + o2 through 
(4.15), and this value must be dropped. In the second one (-7 + 16a = 9), we obtain the 
value a = 1 and the system becomes then the Manakov system [19]. However, as we have 
seen in section 5, this value of a is forbidden in the physical situation considered. One can 
check easily that all other cases lead to a negative value for oz. 

8. StabiIity analysis 

Since the work of Benjamin and Feir [21] and later of Stuart and DiPrima [22], we know 
that the scalar (one-field) nonlinear Schrodinger equation govems two different regimes 
depending on the relative signs of the dispersive term versus the nonlinear term. In the 
defocusing case (opposite signs) the system is stable against small perturbations of the 
amplitude of the plane wave. It is said that it is modulationally stubfe. In the focusing 
case (same signs for the dispersive and nonlinear terms), it exists as a threshold for the 
wavenumber beyond which any perturbation of the envelope experiences an exponentional 
growth (modulational instability). This growth is rapidly saturated by the nonlinearity and 
thus the system propagates localized coherent structures: the solitons. The two regimes 
are thus physically very different and this is also true from a mathematical point of view. 
Indeed, in the spectral-transform scheme, the defocusing (stable) case is related to a self- 
adjoint eigenvalue problem (only real eigenvalues) while the focusing (unstable) case is 
related to a non-self-adjoint problem (complex eigenvalues related to the soliton solutions). 

These stability properties are then crucial and we examine now our system (7.3) from 
the point of view of [21] and [22] and prove that it is actually nwdulationaffy unstable. As 
a consequence soliton solutions are naturally built up and we shall study these structures in 
the next section. 

It is important for the following to remember that a, f i  and a are positive constants. 
We look at the behaviour of a weak perturbation of the static solution 

@o(r) = @o(r) = exp 2ia-r (8.1) [,;I 
of the system (7.3) under the form 

@ = @o(r)[l+ Z)I @ = @ O W U  +&es r ) l .  (8.2) 
The perturbation is weak in the sense that all quadratic terms in (4.14) can be neglected 
and the resulting linear system reads 
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A solution is now saught under the form of a plane wave of real wavenumber 1 and growth 
rate p (which can. be complex) as 
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$ = A1 exp[(il$ + pt)] + Azexp[(-ilE + p't)] 
4 = BI exp[(ilc + pt)] + B~exp[(-il{ + p'r)] (8.4) 

where AI ,  Az, BI and B2 are complex constants. 
By inserting (8.4) in (8.3) and using the linear independence of the exponentials, one 

finds that (8.3) becomes a linear homogeneous system for the unknowns A I ,  Ax, 51 and Bz. 
A non-trivial solution requires a vanishing determinant, i.e. 

[ ~ ' p '  + pP(pP - 4aa)l[kp2 + pP(pP - (8.5) -a))]  = 0.  
Requiring the first 'term to vanish, we get the following eigenrelation €or p in terms 

of 1: 

Therefore, when 

(8.6) 

(8.7) 

the growth rate p is real-valued and the perturbations $ and 8 grow exponentially in 7 .  

This is the Benjamin-Feir instability which is a source of soliton formation as was first 
demonstrated in rhe context of water waves 1231. 

If now the second term of (8.5) is set equal to zero, the determining relation for the 
growth rate p becomes 

Consequently if w < 1 the growth rate p is a pure complex number and the solution is 
stable. If, however, o > 1, p takes real values in the range 

which is included in the preceding condition (8.7). 
In summary, the Benjamin-Feu instability takes in our case a new feature when the 

parameter o entering (4.14) (actually, the input frequency of the radiation interacting with 
the two-level system) is less than 1 (i.e. when we stay on the acoustic branch). In that case 
indeed, the system is not strictly unstable as it possesses altogether a stable and an unstable 
solution. There is then an open problem: which of these solutions is selected naturally by 
the system? Or shall we see bifurcations from a stable solution to the unstable one? We 
cannot answer these questions now, especially as the soliton solutions (described in the next 
section) do not strongly depend on the values of w.  

9. Solitary wave solufions 

The simplest solitary wave solution to (4.14) is obtained in the case of a circularly polarized 
electromagnetic wave and reads 
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This travelling envelope solution is characterized by two real parameters, its velocity 

(9.2) 

and its amplitude -2y. It moves in a frame (c, 5 )  which is in translation at the group velocity 
V given in (4.11); then there is the possibility that such a nonlinear coherent structure be 
trapped in the medium. To see this, it is necessary to come back to the laboratory frame 
(Z, T). Defining 

P 
h 

vs = -4-& 

p = E Y  #ii = Ep (9.3) 
and using (4.4) and (43, the physical fields can be written independently of the scaling 
factor E (the small quantity is now the amplitude i. of the light pulse); they read 

-2j; exp[ie(Z. T)] 
cosh <(Z, T) 

exp[i(wT - k ~ ) ]  + s(2) E(Z, T) = (1) (9.4) 

Above we have defined 
a 

- V T )  +4($ - p ) - ~  A (9.7) 

(9.8) 

As it should be, the above solution is independent of the scaling parameter E, which confirms 
the consistency of the multiscale expansion of section 4. 

Appendix. 

Inserting the infinite series expansion (4.1) into the system (2.7) we obtain 

1 P <(Z, T) = 2j; - ( Z  - VT)  + 4 - & Z T  - Zo) . a A 

[(€'ar - E v a ,  + inw)'+ IJ(P," + EP; + . . .) 
= -a C ' ( N ~  + E N ;  + . . .)(E; + €E; + . . .) 64.1) 

PW" 

(czar -€Vac + ino)(Nt +EN; + ...) 
= C [(czar - E v a l  + iqo)(P$ + E P ~  + . . :)](E: + €E;  + . . .) 

[(€'a, -€vat  + ino) ' - (€a ; - ink) ' ] (E~~++~L+. . . )  
= - (czar - Eva, + inw)'(PZz + E P ; ~  + . . .) (A.3) 

[(E%, - e V g  + ino)'](E& + EEE + . . .) 
=~ - (€'ar -Eva, + ino)2(P{z + E P ; ~  + . . .) . (A.4) 

Hereabove, the quantities E; and P,! are vectors of C3 and the indices x, y or z indicate 
their three components. Wherever the x-component appears, it is, understood by symmetry 
that the same equation also holds for the y-component. 

We now consider the above equations at all orders, and determine the series of constraints 
which leads to a closed non-trivial limit system. 

(A.z) 
P+4'" 
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Order j = 0. The hypothesis (4.3) ensures that the order 0 is automatically verified for 
any Nt  (the initial population difference between the two levels). 

Order j = 1. For n = 0 we obtain 
P; = -~N:E: (A.5) 

and for n = 1: 
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(1 - w2)P: = - c Y N ~ E ~  ioNi = 0 
(A.6) 

E:, = Pi, = O  (A.7) 

(k2-W2)E:,  =wZP' 1X - w2Ef, = oZP:, . 
Therefore comparing the third component of the above equations we obtain 

and then the remaining equations have a non-trivial solution if and only if 

det ( -,."' (A.8) 

which is precisely the dispersion relation (2.14). 
For n P 1 using the dispersion relation, it is easy to prove that 

E" 12 - - P" 1L = E;, = P;, = 0 (A.9) 
and hence the relation (4.6) is proved. 

Order j = 2. For n = 0 we have 
P: = -a(NtE: + NfEP) 
-va& = o 

(A. 10) 
(A.11) 

and forn  = 1: 
(1 - W')P; - Z ~ O J V ~ ~ P , '  = --S(N;E: + NPE:) (A.12) 
iwN: = iwP:Ey (A. 13) 
( k 2 - w 2 ) E L  - 2 i w V a 4 E l , + ~ i a t ~ ~ ,  = w 2 ~ ~ + 2 i w v a F ~ , ' ,  (A. 14) 
-02E& = w2 PA . (A. 15) 

Consequently the fields are polarized also at the order ez: 
E:, = P:, = 0. (A.16) 

Using the first equation in x and comparing with the thiid one, we obtain a system of two 
equations where, thanks to the dispersion relation we can eliminate the terms EL and P&. 
Hence we deduce 

AatE:, = I X O ~ N ~ E ~ ~  (A.17) 
where the constant A is given by 

1 1 
-A = (1 - wz)(wV - k )  - wL'a@- 
2i 1 - w 2 '  

(A.18) 

It is now remarkable that, if the translation velocity V equals the group velocity according 
to (4.11), then A = 0 and hence (4.12) is proved. If, however, we chose an arbitrary 
velocity V, then the system would not cIose. 

For n P 1, thanks again to the dispersion relation we have 
E; = P; = 0 for n > 1 (A.19) 
2ioN: = imp: E: (A.20) 
NZ=O f o r n s . 2 .  (A.21) 
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Order j = 3. For n = 0 the system (2.7) gives 
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(A.22) P: + v 2 2  aF pl 0 - '  - -u(N;E: + N;E; + N; E;' + N;*E;) 

V+(P1 I E ,  1* - P/"E; - N ; ) +  V(aFP,)E, 0 0  

(A.23) 
(A.24) 

(A.25) 

=iu(P:E:*- Pj*Ei+P2E, I I* - Pi*E:)V(EJFPl)El 0 0  

( v 2  - i)a;@, = -v2afpP, " 2 a,% 2 0 - --vZa2pO F 12 ' 

Consequently, from the relations (A.5) and (4.3) we obtain in particular 

N i  = O .  (A.26) 
For n = 1, the relevant equations read 

(1 -w2jp; - z i u v a F ~ ~  +z~w~,P, '  + v2a;p/ = -u(N:E; + N;E: + N;E:') 

(k2 - o ~ ) E : ~  - 2iuVaFE& + 2ioa,Et, + v2afEix + 2ikaFE& - a;& 
-vza;P;x+u2~;r -2i~a,p;, + z ~ o v ~ , P ~ .  (A.28) 

The quantities P: and E: can be eliminated from the above set of equations and, using 
(Ad), P: is expressed in terms of E:,  which finally produce a system for the only field E: 
(note that N; is also expressed in terms of E: by means of (A.20)). This system can be 
finally put into the form (4.14). 

(A.27) 
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